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Abstract. In the tradition of modeling languages for optimization, a single model is passed

to a solver for solution. In this paper, we extend BARON’s modeling language in order to
facilitate the communication of problem-specific relaxation information from the modeler
to the branch-and-bound solver. This effectively results into two models being passed from

the modeling language to the solver. Three important application areas are identified and
computational experiments are presented. In all cases, nonlinear constraints are provided
only to the relaxation constructor in order to strengthen the lower bounding step of the
algorithm without complicating the local search process. In the first application area,

nonlinear constraints from the reformulation–linearization technique (RLT) are added to
strengthen a problem formulation. This approach is illustrated for the pooling problem
and computational results show that it results in a scheme that makes global optimization

nearly as fast as local optimization for pooling problems from the literature. In the second
application area, we communicate with the relaxation constructor the first-order optimality
conditions for unconstrained global optimization problems. Computational experiments

with polynomial programs demonstrate that this approach leads to a significant reduction
of the size of the branch-and-bound search tree. In the third application, problem-specific
nonlinear optimality conditions for the satisfiability problem are used to strengthen the

lower bounding step and are found to significantly expedite the branch-and-bound algo-
rithm when applied to a nonlinear formulation of this problem.

Key words: BARON, First-order optimality conditions, Mathematical programming modeling
languages, Pooling problem, Reformulation-linearization, Satisfiability

1. Introduction

Powerful algebraic modeling languages have been developed over the last
two decades for linear and nonlinear mathematical programs (cf. [3, 6]).
These languages permit rapid development of new optimization models
and algorithms, as well as convenient experimentation with existing numer-
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ical optimization solvers. Their key features include support for arithmetic,
logical and conditional expressions, automatic differentiation, and seamless
interfaces to popular mathematical programming solvers.
Algorithmic needs in global optimization have recently motivated the

development of specialized global optimization modeling languages (BARON
[8, 9, 34], NUMERICA [36], and NOP-2 [23]) and have played an important
role in the development of other, more general, modeling systems (gProms
[31] and MINOPT [24]).
The development of the BARON global optimization system began in the

early 1990s in an effort to integrate constraint programming and optimiza-
tion techniques within the branch-and-bound framework for the global
optimization of nonconvex nonlinear and mixed-integer nonlinear pro-
grams. The approach relies on constraint propagation, interval arithmetic,
and duality to draw inferences regarding ranges of integer and continuous
variables in an effort to expedite the traditional branch-and-bound algo-
rithm for global optimization problems. Because considerable emphasis is
placed on the reduction of variable bounds, the overall methodology is
referred to as branch-and-reduce [19, 20]. This approach has been enhanced
with a modeling language [8, 9, 34], finite branching schemes [1, 25], and a
number of convexification techniques [32, 33, 35]. The implementation of
this methodology in BARON and its application in a variety of applications,
including chemical process design and operation, chip layout and design,
design of just-in-time manufacturing systems, optimization under uncer-
tainty, pooling and blending problems, and molecular design were reviewed
recently in [34].
Modeling languages for global optimization serve two primary goals.

First, they facilitate the automation and systematic testing of global opti-
mization algorithms. Second, they provide a vehicle for testing new model-
ing language concepts that are currently not supported by general
mathematical programming languages because they are highly specialized
or in their formative stages.
The purpose of this paper is to present a modeling language construct

that can be used to considerably enhance the convexification capabilities of
the BARON global optimization system. The work is motivated by the obser-
vation that nonlinear problem reformulations can often tighten the relaxa-
tion process of a branch-and-bound algorithm while making local search
considerably more difficult. It therefore seems natural that a global optimi-
zation solver would benefit from user-supplied information about two dif-
ferent optimization models: one that provides upper bounds (local search)
and another that provides lower bounds (global search). Equipped with
such a tool, the user could provide modeling information that would help
the global solver improve the efficiency of its global search component
without compromising its local search capabilities.
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The remainder of this paper is structured as follows. Section 2 reviews
the algorithmic framework of branch-and-reduce and Section 3 provides a
short description of the BARON modeling language. In Section 4, we
describe a new modeling feature in BARON that allows the user to pass
relaxation-only equations to the global solver. Sections 5–7 describe com-
putational experience with the application of this construct in three differ-
ent areas. Finally, conclusions are drawn and possible extensions are
suggested in Section 8.

2. The Branch-and-Reduce Algorithmic Framework

2.1. MIXED-INTEGER NONLINEAR PROGRAMMING

We address the problem of finding a globally optimal solution of the fol-
lowing mixed-integer nonlinear program:

min fðxÞðPÞ
s.t. gðxÞO0;

xi 2 Z; i ¼ 1; . . . ; nd;

xi 2 R; i ¼ nd þ 1; . . . ; n;

where f : Rn 7!R and g : Rn 7!R
m are assumed to be factorable functions

[16]. To solve P, BARON first reformulates the problem to an almost separa-
ble one and preprocesses it to reduce variable ranges. Then, we follow the
prototypical branch-and-bound algorithm of Horst and Tuy [12] by speci-
fying a number of branching and bounding operations. Our approach com-
bines elements of the algorithms of Falk and Soland [5] and McCormick
[15]. Furthermore, it incorporates interval analysis and constraint program-
ming tools to expedite the search. The main algorithmic steps are detailed
next.

2.1. AUTOMATIC PROBLEM REFORMULATION AND RELAXATION

It is well-known that any factorable program can be converted to a separa-
ble program through the introduction of additional variables (cf. [14]). In
BARON, the mathematical program provided by the user is first symbolically
reformulated to an almost separable form. In particular, bilinearities of the
original model are retained. The details of this symbolic reformulation and
subsequent relaxation are provided in [35] and an example can be found in
[22]. A similar restructuring of the original program that retains bilinearities
as well as higher order multilinearities facilitates the construction of refor-
mation–linearization technique (RLT)-based lower bounds [30].
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Assuming that all problem variables are bounded, a lower bounding pro-
gram can be easily derived from the above reformulation. A univariate
concave (convex) function f(x), where x ˛ [xL, xU], is underestimated
(overestimated) by the chord that joins the points (xL, f(xL)) and (xU,
f(xU)). Conversely, a univariate concave (convex) function is overestimated
(underestimated) by the function itself. Then, a convex outer-approximator
of any concave or convex univariate function can be constructed by com-
bining these estimators. Similar arguments allow construction of outer-ap-
proximators of arbitrary univariate lower semi-continuous functions.
Bilinear terms (xy) over a rectangle [xL, xU] · [yL, yU] are outer-approxi-
mated via four hyperplanes due to [15].
The above-described reformulation–relaxation scheme was first proposed

in [19, 20] and was inspired from the relaxation technique of McCormick
who developed an algebra of outer-estimators for bounding factorable pro-
grams [15]. McCormick’s scheme produces the same outer-approximator
as the above relaxation technique when applied to the almost separable
reformulation of a mathematical program with no common subexpres-
sions. However, McCormick’s relaxation differs from the above as it is
expressed using nondifferentiable operators and does not introduce any
intermediate variables for subexpressions. It was proven recently in [35]
that our reformulation–relaxation scheme dominates the McCormick
scheme by enabling the identification of common subexpressions and, as a
result, provides tighter relaxations when applied to the complete mathe-
matical program P.
After its original proposal in [19, 20], the reformulation–relaxation

described above has been adopted by several branch-and-bound systems.
For instance, it is used in gProms [31] and LINGO [7]. While this type of
relaxation is still available as an option in BARON; BARON0s current default
relaxation strategy is to further relax the convex nonlinear functions of the
above-described relaxation by tangential outer-approximators based on a
variant of the sandwich algorithm as proposed in [35]. This yields an
entirely polyhedral outer-approximator that can be solved efficiently and
reliably via linear programming techniques.

2.3. ROOT NODE PREPROCESSING

Construction of the relaxation described in the previous subsection requires
a bounded box over the problem variables. To obtain such bounds, each
problem variable is minimized and then maximized over the linear con-
straint set of the reformulation described in Section 2.2. In addition, as
proposed in [19, 20], the nonlinear constraints from the reformulation are
used to propagate variable bounds using interval arithmetic. This con-
straint propagation step produces tighter variable bounds than obtained by
just solving linear programs (LPs).
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Local searches are performed from several randomly generated starting
points. The starting points for these local searches are generated in the
bounding box obtained as a result of the preprocessing on variable bounds.
Subsequently, an objective function cut of the form f(x) O f * is used to
further restrict variable bounds in the constraint propagation phase. Here,
f * corresponds to the value of the incumbent and constraint propagation
is done whenever a new upper bound is found. Furthermore, whenever a
new upper bound is found and/or constraint propagation improves lower/
upper bounds for some of the problem variables, the above-mentioned pre-
processing LPs are solved approximately by doing Fourier–Motzkin elimi-
nation using one constraint at a time as detailed in [25]. Empirical
investigation in [25] demonstrated that this approximate method of solving
the preprocessing LPs works well when initial bounds on the problem vari-
ables are obtained by solving the most of LPs exactly.

2.4. NODE POSTPROCESSING

Once the relaxation is solved, the optimal Lagrange multipliers provide the
slope of a first-order underestimator of the relaxation value function in the
vicinity of the relaxation solution. As proposed in [19, 20], this underestima-
tor is used to restrict ranges of variables. Subsequently, LPs are solved to
obtain tighter bounds on a selected set of variables in a step termed as ‘‘prob-
ing’’ in BARON. Probing LPs differ from the preprocessing LPs in that they
include polyhedral outer-approximators of the nonlinear relations in the
reformulation. Two types of LPs are considered in probing. Normally, a var-
iable will be minimized and maximized over the linear constraints. Option-
ally, a variable is fixed at some point between the bounds, an LP is solved to
optimize the linear underestimator of the objective, and Lagrange multipliers
are used to tighten the range for the variable. Probing LPs are solved only
for variables that contribute significantly to the gap between the original
nonconvex problem functions and their underestimators at the relaxation
solution. For the remaining problem variables, three methods of tightening
variable bounds are used. First, as shown in [35], dual solutions from the
probing LPs provide first-order underestimators for the value function of the
original problem and are used to facilitate range contraction. Second, prob-
ing LPs are solved approximately using Fourier–Motzkin elimination as
mentioned above on the linear part of the reformulation to propagate the
improved bounds. Third, constraint propagation is done on the nonlinear
constraints.

2.5. NODE PARTITIONING

Rectangular partition is used to divide the range of one variable into two
subsets. Using certain heuristic strategies proposed in [35], the underestima-
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tion gap – between the nonconvex functions of the reformulation and the
convex relaxation – at the optimal solution of the relaxation is apportioned
among the problem variables. The branching variable is then selected based
on its contribution to the underestimation gap while taking into account
its interval length. Although branching in BARON can optionally occur in
the space of the introduced variables, BARON, by default, will branch only
on the original problem variables. A violation transfer scheme proposed in
[35] is used to transfer the contributions of introduced problem variables
to original problem variables. The violation transfer scheme takes into
account the relative importance of the constraints by suitably weighting
their underestimating gaps by constraint duals.
Once a variable has been selected for branching, the branching point is

determined as a convex combination of the relaxation solution and the mid
point of the variable’s range. This guarantees exhaustiveness, which is
required for proving convergence of branch-and-bound [12]. Yet, our
approach biases the branching point selection towards the relaxation solu-
tion, which often quickly reduces the relaxation gap.
Finally, if the best known solution lies in the interior of the current box,

this solution point is chosen for branching. For certain branch-and-bound
processes, this modifying branching point selection rule guarantees finite-
ness as opposed to convergence at the limit only [25].

2.6. NODE SELECTION

A node corresponding to the least lower bound is chosen, at least occasion-
ally, for further processing and partitioning. This is needed in order to
guarantee convergence when branching occurs in continuous variable
spaces [12]. Occasionally, BARON will instead select for further processing a
node for which the violation – between underestimators and original non-
linear problem functions – at its relaxation solution is small. This often
leads to the selection of nodes whose relaxation identifies feasible solutions
of P early during the search. Finally, if memory requirements dictate it,
BARON will switch to a last-in, first-out (LIFO) strategy.

2.7. NODE PREPROCESSING

During the course of the branch-and-bound search, each node is prepro-
cessed in a manner that resembles the root node preprocessing described in
Section 2.3. However, the preprocessing LPs are not solved exactly and the
local search is done only sporadically when deemed potentially beneficial.
The approximate solution of LPs and constraint propagation of the
bounds using interval arithmetic techniques are inexpensive computation-
ally. Nonetheless, they greatly reduce variable ranges and are therefore per-
formed at every node of the search tree.
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2.8. IMPLEMENTATION

Initially, the branch-and-bound algorithm was encoded in the BARON sys-
tem and specialized modules were developed for solving various special
classes of global optimization problems [19–21]. Later, the modeling lan-
guage was developed [8, 9] along with preliminary capabilities of reformu-
lation and relaxation of factorable programs. More recently, the solver and
modeling language underwent considerable rewrite to include sophisticated
data structures and several algorithmic enhancements, including convexifi-
cation and range reduction strategies [34, 35].
At present, BARON’s core consists of nine major components: (1) the I/O

handler, which is described in more detail in the next section; (2) the pre-
processor, which aims to obtain a bounded box for the problem variables
and a good feasible solution for the problem; (3) the navigator, which
coordinates the transitions between the different states of branch-and-
bound; (4) the data organizer; (5) range reduction facilities; (6) Interfaces
to OSL; CPLEX; MINOS; SNOPT, and SDPA for solving local and underestimat-
ing problems; (7) BARON’s automatic differentiator; (8) sparse matrix utili-
ties; and (9) debugging and development facilities.

3. BARON’s Modeling Language

A context-free grammar has been developed as part of BARON for the input
of factorable nonlinear programming problems in which the constraint and
objective functions are recursive sums and products of univariate functions
of monomials, powers, and logarithms. A BARON input file has the follow-
ing components:

– An OPTIONS section, which is optional and allows the user to select
values for options that control termination, range reduction, branch-
ing, and numerous other algorithmic steps.

– An optional command to specify the maximum amount of memory
that may be used by BARON’s data structures.

– A MODULE command that allows the user to select from amongst
BARON0s specialized modules or the factorable nonlinear programming
solver, which is denoted as NLP.

– The problem data section, where the user can use commands to:
• declare VARIABLES; BINARY VARIABLES; INTEGER VARIABLES;
• optionally provide LOWER BOUNDS and UPPER BOUNDS for some or all
problem variables;

• optionally specify BRANCHING PRIORITIES for problem variables;
• declare EQUATIONS of the mathematical program to be solved;
• describe declared EQUATIONS;
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• describe an objective function and specify whether the objective is to
be minimized or maximized;

• optionally provide a STARTING POINT.

As an example, consider the following problem from [17]:

min � 500xþ 2:5x2 þ � � � þ 0:8x50 ðsee½17�Þ ð1Þ
s.t. 1OxO2:

The BARON input for this problem is then as follows:

MODULE: NLP;

VARIABLE x;
LOWER BOUND { x: 1; }
UPPER BOUND { x: 2; }
OBJ: minimize� 500 � xþ 2:5 � x̂ 2+���+0.8�x̂ 50;

4. New Modeling Construct for Problem-Specific Lower Bounding

The relaxation constructor described in Section 2 does not make use of any
optimality conditions. One observes, though, that the example of the previ-
ous section will have a solution either at one of the two bounds of x or at a
point where the gradient of the objective is zero, i.e., a point satisfying:

0 ¼ 500þ 5xþ � � � þ 40x49: ð2Þ

One can, therefore, solve the above example problem by first evaluating
the objective function at the two bounds of x and then by optimizing the
polynomial subject to constraint (2).
Without constraint (2), BARON finds the global minimum of (1) at the

root node and takes 29 nodes to prove globality. When the optimality con-
dition (2) is added as a constraint, BARON benefits considerably as it termi-
nates with proof of globality at the root node. On the contrary, the effect
of constraint (2) to the local solver GAMS=MINOS is detrimental. In particu-
lar, when the problem is solved without constraint (2), GAMS=MINOS finds
the global solution in five iterations. On the other hand, when the local
optimality condition (2) is added as a constraint, the local solver takes 15
iterations and declares the problem as locally infeasible. Both GAMS/
MINOS runs used the same starting point x ¼ 1, which is very close to the
global solution of x ¼ 1.09117.
Note that BARON also makes use of MINOS in its local search component.

Thus, apparently, addition of the optimality condition affects the global
search component of the algorithm. In particular, feasibility-based range
reduction in conjunction with the objective function cut is able to prove
globality within BARON’s default 10)6 optimality tolerance.
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The conclusion drawn from this example is that the addition of con-
straint (2) greatly accelerates the global search component of BARON while
it severely interferes with local search. Extensive computational experi-
ments in the next three sections present further empirical evidence under
many different scenarios that corroborate these findings. This leads us to
believe that it is beneficial to have the ability of communicating two differ-
ent models to the global solver: one model to be used for relaxation and
range reduction and another model to be used for local search. This can be
achieved easily by extending BARON’s modeling language to accept the fol-
lowing construct:

RELAXATION ONLY EQUATIONS < constraint names >;

Constraints that are declared with the above construct are processed
through BARON’s reformulator and relaxation constructor. They are then
used for constraint propagation. However, they are not made part of the
local search model.
A similar construct can be introduced to achieve a complete separation

between the relaxation and local search models:

LOCAL ONLY EQUATIONS < constraint names >;

Here, we restrict discussion to the RELXATION ONLY EQUATIONS construct,
which can be used to model the above polynomial example as follows:

MODULE: NLP;
VARIABLE x;
LOWER BOUND{ x: 1; }
UPPER BOUND{ x: 2; }

RELXATION ONLY EQUATION e1;
e1 : 500 ¼¼ 5 � xþ � � � þ 40�x̂ 49;

OBJ : minimize� 500 � xþ 2:5 � x̂ 2+���+0.8�x̂ 50;

The next three sections provide additional examples illustrating the use
of this modeling construct and demonstrating its usefulness.

5. Linearizing RLT Constraints and Application to the Pooling Problem

The RLT [26, 27] is a systematic methodology for deriving tight formula-
tions for combinatorial and continuous global optimization problems. In
the reformulation step of RLT, constraints of the initial formulation are
multiplied with each other to yield valid nonlinear constraints. In the line-
arization step of RLT, new variables are introduced to replace products of
variables. Additional RLT passes may be performed on the newly derived
formulation to further strengthen its relaxation.
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It has been shown that RLT leads to tight linear programming relaxations,
including convex hulls for certain problem classes. Relaxation tightness
comes at the expense of a significantly increased problem size that results
from the reformulation and linearization steps. Thus, it would be highly
desirable to develop an automated procedure for implementing and testing
different RLT schemes. In many problem instances, only a few of the RLT
constraints may suffice to tighten the formulation and the modeler may thus
be interested in studying the effect of a few constraint products on relaxation
tightness. Even then, there are still many constraints to be introduced in the
linearization phase. As BARON0s reformulator currently provides an auto-
mated means for the linearization phase, one possibility is to supply BARON

with the nonlinear formulations that result from the reformulation phase of
RLT. A potential complication is that these nonlinear constraints may make
local search difficult. Thus, the RELAXATION ONLY EQUATIONS construct
seems ideal for experimenting with different RLT constructs. This is demon-
strated in this section using the pooling problem as an example.
The pooling problem is a network flow problem over three sets of nodes:

supply nodes that represent the sources of raw materials that flow to demand
nodes (final product destinations) either directly or indirectly through trans-
shipment nodes (pools). The unit costs as well as attributes, such as compo-
nent concentrations of raw materials and final products are given. The
problem is then to find the optimal flows in the network so as to maximize
net profit. Nonlinearities arise in attribute balances around pools since the
pool attribute qualities as well as the inflows and outflows are all variables.
To describe models for the pooling problem, we will use the notation of

Table 1.

The so-called q-formulation of the pooling problem is as follows [2]:

min
PJ

j¼1

PL

l¼1
ylj
PI

i¼1
ciqil � dj

PL

l¼1
ylj þ

PI

i¼1
cizij �

PI

i¼1
djzij

� �

s.t.
PL

l¼1

PJ

j¼1
qilylj þ

PJ

j¼1
zijOAi i ¼ 1; . . . ; I;

PJ

j¼1
yljOSl l ¼ 1; . . . ;L;

PL

l¼1
ylj þ

PI

i¼1
zijODj j ¼ 1; . . . ; J;

PL

l¼1

PI

i¼1
Cikqil � PU

jk

� �

ylj þ
PI

i¼1
ðCik � PU

jkÞzijO0 k ¼ 1; . . . ;K;

j ¼ 1; . . . ; J;
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PI

i¼1
qil ¼ 1 l ¼ 1; � � � ;L;

qilP0; yljP0; zijP0 8ði; j; lÞ:
We now consider the following two sets of constraints:
XI

i¼1
qilylj ¼ ylj l ¼ 1; . . . ;L; j ¼ 1; . . . ; J; ð3Þ

XJ

j¼1
qilyljOqilSl i ¼ 1; . . . ; I; l ¼ 1; . . . ;L: ð4Þ

These constraints can be obtained when the RLT is applied to the above
pooling formulation (see [18] and Chapter 10 of [34]). These two particular
constraint sets form a small subset from amongst all the possible RLT con-
straints that can be generated for the pooling problem. In [34], it was
shown that these two sets of constraints play a special role in terms of pro-
ducing a tight relaxation for the pooling problem by convexifying multilin-
ear expressions of q and y over the constraints

PI
i¼1 qil ¼ 1; l ¼ 1; . . . ;L.

It is therefore desirable to add (3) and (4) to the pooling problem formula-
tion. When these constraints are added to the q-formulation, we will refer
to the resulting model as the pq-formulation.
Tables 2 and 3 present computational results for pooling problems from

the literature using local search solvers. The original sources of the problems
can be found in Chapter 10 of [34]. In all cases, the problems are solved
under GAMS using default starting points and algorithmic options for the solv-
ers. Constraints (3) and (4) are redundant as far as the pooling problem for-

Table 1. Pooling problem nomenclature

Indices

i Raw materials, i ¼ 1; . . . ; I

j Products, j ¼ 1; . . . ; J

k Qualities, k ¼ 1; . . . ;K

l Pools, l ¼ 1; . . . ;L

Variables

qil Quality of ith product in pool l ðxil ¼ qil
PJ

j¼1 yljÞ
xil Flow of ith raw material into pool l

ylj Total flow from pool l to product j

zij Direct flow of raw material i to product j

Parameters

ci Unit cost of the ith raw material

dj Price of jth product

Ai Availability of ith raw material

Cik kth quality of raw material i

Dj Demand of jth product

PU
jk Upper bound on kth quality of jth product

Sl lth pool capacity
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mulation is concerned. Nonetheless, their addition to the problem formula-
tion deteriorates performance of GAMS=CONOPT as shown in Table 2. In par-
ticular, this solver finds worse local optima for 8 of these 14 pooling
problems while its CPU time almost doubles. Only in one instance (rt97), an
improved solution is found by GAMS=CONOPT with the pq-formulation. As
shown in Table 3, the performance of GAMS=MINOS seems to be somewhat less
sensitive to the addition of constraints (3) and (4). In particular, the objective

Table 2. Computational results for pooling problems with GAMS=CONCOPT

Problem q-Formulation pq-Formulation

Objective CPUs Iter Objective CPUs Iter

adhya1 )68.74 0.01 9 )56.67 0.00 5

adhya2 0.00 0.01 4 0.00 0.01 3

adhya3 )65.00 0.03 12 )57.74 0.02 7

adhya4 )470.83 0.01 9 )470.83 0.02 9

bental4 0.00 0.01 3 0.00 0.00 3

bental5 )2900.00 0.02 9 )2700.00 0.03 18

foulds2 )1000.00 0.00 6 )600.00 0.01 14

foulds3 )6.50 0.04 6 )6.50 0.09 9

foulds4 )6.00 0.04 6 )6.50 0.16 23

foulds5 )7.00 0.04 7 )6.50 0.06 7

haverly1 )400.00 0.00 5 0.00 0.00 3

haverly2 )400.00 0.00 5 0.00 0.01 3

haverly3 )750.00 0.01 8 0.00 0.00 3

rt97 Inf 0.00 4 )4330.78 0.01 8

Sum )6074.07a 0.22 89 )3904.74a 0.41 107

aNot including rt97.

Table 3. Computational results for pooling problems with GAMS=MINOS

Problem q-Formulation pq-Formulation

Objective CPUs Iter Objective CPUs Iter

adhya1 0.00 0.01 9 0.00 0.01 9

adhya2 0.00 0 9 0.00 0.01 9

adhya3 0.00 0.01 15 0.00 0.01 15

adhya4 )470.83 0.04 74 )470.83 0.03 59

bental4 )100.00 0 5 )100.00 0.01 5

bental5 )1900.00 0 11 )1900.00 0.02 11

foulds2 )700.00 0.01 15 )700.00 0.01 15

foulds3 )7.50 0.67 420 )8.00 1.01 438

foulds4 )8.00 0.66 463 )8.00 0.83 462

foulds5 )8.00 0.45 305 )8.00 0.49 219

haverly1 )100.00 0.01 5 )100.00 0.01 5

haverly2 )600.00 0.01 5 )600.00 0 5

haverly3 )125.00 0 13 )125.00 0.01 13

rt97 )4391.83 0.02 103 )4391.83 0.02 111

Sum )8411.1633 1.89 1452 )8411.6633 2.47 1376
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function quality improves in one case, while the CPU time increases by 30%
over the entire collection after the introduction of these constraints.
Computational results with the two formulations and BARON are shown in

Table 4. Three strategies are compared. Strategies 1 and 2 correspond to
solving the q- and pq-formulations, respectively. Strategy 3 solves the pq-
formulation where constraints (3) and (4) are introduced through the
RELAXATION ONLY EQUATIONS construct. For each strategy, this table shows:

– Nt: The total number of nodes in the search tree. An entry of )1(0)
indicates that the problem was solved at the root node after prepro-
cessing (postprocessing).

– No: The node where the optimal solution was found.
– Nm: The maximum number of nodes that had to be stored in memory.
– CPUs: CPU seconds on a Dell Precision 530 workstation with a
1.7 GHz Pentium IV Xeon processor. All runs were restricted to
32 MB of memory.

As seen from Table 4, solving the q-formulation results in very slow conver-
gence. The runs for adhya3, adhya4, bental5, foulds3, foulds4, and foulds5
were terminated after 20 min with a large relaxation gap. On the other hand,
the pq-formulation makes all these problems easily solvable. With the excep-
tion of adhya1, adhya2, adhya3, and rt97, all other problems are solved at the
root node. For the problems solved at the root node, using the
RELAXATION ONLY EQUATIONS construct for the RLT constraints generally
reduces the CPU time by reducing the CPU time for local search. The only
exception is foulds3, which was solved in the first local search in Strategy 2

Table 4. Computational results for pooling problem with BARON

Problem Strategy 1 Strategy 2 Strategy 3

Nt No Nm CPUs Nt No Nm CPUs Nt No Nm CPUs

adhya1 573 550 50 17 30 24 7 1 28 24 7 0.5

adhya2 501 338 41 20 17 13 4 1 17 13 4 0.5

adhya3 9248a 2404 1800a 1200a 31 1 6 1.5 31 1 6 1.5

adhya4 6129a )1 1620a 1200a 1 1 1 1.5 1 1 1 1

bental4 101 101 14 0.5 1 )1 1 0.5 1 )1 1 0.5

bental5 6445a 901 3815a 1200a )1 )1 0 0.5 )1 )1 0 0

foulds2 1061 977 106 16 )1 )1 0 0 )1 )1 0 0

foulds3 348a 91 260a 1200a )1 )1 0 1 )1 )1 0 5

foulds4 326a 262 246a 1200a )1 )1 0 1 )1 )1 0 1

foulds5 389a 316 287a 1200a )1 )1 0 1 )1 )1 0 1

haverly1 25 6 5 0 1 1 1 0 1 1 1 0

haverly2 17 1 5 0 1 1 1 0 1 1 1 0

haverly3 3 1 2 0 1 1 1 0 1 1 1 0

rt97 5629 2836 609 173.5 13 6 4 0.5 13 6 4 0.5

Sum 30795 8783 8860 7427 91 42 10 10 89 42 26 12

aRun did not terminate within 1200 s.

ACCELERATING BRANCH-AND-BOUND 271



whereas additional local searches were required in preprocessing of Strategy 3.
Note that BARON makes use of MINOS for local search and, as seen in Table 3,
foulds3 is the only problem in this collection for which MINOS benefits from
the introduced constraints. Without these constraints, some additional local
searches are required to identify the global solution at the root node by Strat-
egy 3, thus increasing the CPU time in comparison to Strategy 2. Nonetheless,
for adhya1, adhya2, adhya4, and bental5, which are not solvable at the root
node by any strategy, we observe that Strategy 3 is able to terminate faster
than Strategy 2. This is because nonlinear RLT constraints are not present in
local search in Strategy 3, thus making local search easier for this strategy.
It is interesting to note that the CPU times for solving this set of pooling

problems to global optimality (Strategies 2 and 3 in Table 4) are no more
than five times as much as the CPU times for local search (Table 3), indi-
cating that these strategies make global search almost as fast as local
search for this set of pooling problems.

6. First-Order Optimality Conditions and Application to Unconstrained

Polynomial Programs

The example of Section 3 illustrated that adding the first-order optimality
conditions to the model formulation can significantly enhance BARON0s glo-
bal search component. In general, it would be interesting to study the effect
of adding �(f(x)) ¼ 0 as a constraint to the problem of globally minimizing
f(x). While optimality constraints have long been used for exclusion tests in
interval global solvers such as GLOBSOL [13] and NUMERICA [36], they have
not heretofore been explored for relaxation construction or tightening. In
this section, we present the first such computational experimentation. We
do so in the context of univariate polynomial problems:

min fðxÞ ¼
Xn

i¼0
cix

iðP1Þ

s.t. xLOxOxU;

where ci, i ¼ 1, ..., n are given real numbers. As one can evaluate the objec-
tive at xL and xU and compare their values to the solution of an algorithm
that solves the problem in (xL, xU), without loss of generality, we may
restrict attention to (xL, xU) and reformulate the problem as:

min fðxÞ ¼
Xn

i¼0
cix

iðP2Þ

s.t.
Xn

i¼1
icix

i�1 ¼ 0;

xLOxOxU;
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Compared to P1, P2 has an additional constraint that is nothing else but
the first-order necessary optimality condition for the unconstrained univari-
ate polynomial program.
Table 5 shows the effect that adding the local optimality condition has

on local search. The original sources of the seven problems considered here
can be found in [20]. The table shows the order of the polynomial (n), the
objective function value of the global minimum (f *), and the values of the
local solutions obtained by GAMS=CONOPT and GAMS=MINOS for models P1
and P2. When the first-order optimality conditions are added to the model
formulation, better solutions are found for problems p1 and p6. On the
other hand, the solutions for problems p5 and p7 worsen. Worse though,
model P2 is declared as locally infeasible for problems p2 and p3 by both
local solvers. Apparently, the nonconvexity of the first-order optimality
condition is responsible for this bad behavior of the local solvers.
Computational results with the two formulations and BARON are shown

in Table 6. Three strategies are compared. Strategies 1 and 2 solve formu-
lations P1 and P2, respectively. Strategy 3 solves formulation P2 where the
first-order optimality constraint is introduced through the
RELAXATION ONLY EQUATIDN construct. As in the previous section, for each
strategy, Table 6 shows the total number of nodes (Nt), the node where the

Table 5. Local search for univariate polynomial programs

Problem n f * GAMS=CONOPT GAMS=MINOS

P1 P2 P1 P2

p1 6 )29763.23 0.10 )29763.23 0.10 )29763.23
p2 50 )663.50 )663.50 Infeasible )663.50 Infeasible

p3 5 )443.67 0.00 Infeasible 0.00 Infeasible

p4 4 0.00 0.00 0.00 0.00 0.00

p5 4 0.00 0.00 0.30 0.00 0.30

p6 4 7.00 250.00 7.00 250.00 7.00

p7 4 )7.50 0.00 6.00 0.00 6.00

Table 6. Global search with BARON on unconstrained polynomial programs

Problem Strategy 1 Strategy 2 Strategy 3

Nt No Nm Nt No Nm Nt No Nm

p1 51 )1 8 1 )1 1 1 )1 1

p2 29 1 5 3 )1 2 3 1 2

p3 45 10 7 1 1 1 1 )1 1

p4 51 )2 6 7 )1 2 7 )1 2

p5 15 )2 4 9 )1 3 9 )1 3

p6 95 )1 11 7 4 3 7 )1 3

p7 19 19 5 1 )1 1 1 )1 1

Sum 305 24 46 29 0 13 29 )5 13
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optimal solution is found (No), and the maximum number of nodes in
memory during the search (Nm). The CPU times were negligible for all
these runs.
As seen in Table 6, BARON’s global search benefits considerably for all

these problems from the addition of the first-order optimality conditions.
In particular, Strategies 2 and 3 require 90% fewer total nodes than Strat-
egy 1. In addition, BARON0s local search component benefits from the
RELAXATION ONLY EQUATION construct in the context of problem p6, for
which the best solution is now identified earlier during the search.

7. Problem-Specific Optimality Conditions and Application to the

Satisfiability Problem

The two previous sections considered generally applicable strategies for
generating valid constraints for a given optimization problem. In many
problems, the modeler can construct problem-specific constraints which
when added to a standard formulation do not alter the solution. For
instance, many scheduling and facility location problems possess symmet-
ric solutions that can be eliminated through the addition of appropriate
constraints to the problem formulation (cf. [28]). Such constraints can sig-
nificantly accelerate exact branch-and-bound algorithms. On the other
hand, the addition of such constraints may make local search a lot more
difficult. In such cases, the RELAXATION ONLY EQUATIONS construct
becomes useful. We demonstrate this in the context of the famous satisfi-
ability problem.
The satisfiability problem involves a set of boolean variables (xi,

i ¼ 1,…, n) and a set of clauses (Cj, j ¼ 1,…, m). Each clause consists of
literals (variables or their negations) combined by logical or connectives.
The goal of the satisfiability problem is to determine whether there exists
an assignment of values to variables that makes the following conjunctive
normal form (CNF) satisfiable:

C1 ^ C2 ^ � � � ^ Cm;

where ^ is the logical and connective.
The satisfiability problem is central in the theory of computation. It is a

core NP-complete problem that is fundamental in applications in auto-
mated reasoning, computer-aided design, machine vision, scheduling, and
many other areas (cf. [4]). Many specialized algorithms have been devel-
oped for the satisfiability problem. The objective of this section is not nec-
essarily to provide a competitive algorithm but merely to use this famous
problem in order to demonstrate the potential benefits of the
RELAXATION ONLY EQUATIONS construct. For this, we consider the following
formulation of the problem:
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min fðxÞ ¼
Xm

j¼1

Yn

i¼1
aiðxiÞðS1Þ

s.t. xi ¼ 0; or 1; i ¼ 1; . . . ; n;

where ai(xi) is defined as:

aiðxiÞ ¼
1� xi; if xi is in clause Cj;

xi; if the negative of xi is in clause Cj;

1; otherwise.

8
<

:

It is known that a CNF is satisfiable if and only if the globally optimal
solution of S1 is zero (cf. [10]). Clearly, then, one can reformulate the
problem by requiring each of the summands in the objective function of S1
to be zero:

min fðxÞ ¼
Xm

j¼1

Yn

i¼1
aiðxiÞðS2Þ

s.t.
Yn

i¼1
aiðxiÞ ¼ 0; j ¼ 1; . . . ;m;

xi ¼ 0 or 1; i ¼ 1; . . . ; n:

As S1 is unconstrained, it is particularly easy to do local search with this
model. For instance, one can generate a random starting point x ˛ [0, 1]n,
locally improve this point using continuous optimization techniques, and,
finally, round the solution point. On the other hand, the presence of the
nonlinear constraints in S2 makes local minimization very difficult for this
problem despite the fact that these constraints may help local search escape
from local minima.
Computational results with the two formulations and BARON are shown

in Table 7. The problems solved originate from the DIMACS benchmark set
for satisfiability and were taken from SATLIB [11]. All runs were restricted
to 32 MB of memory on a Dell Precision 530 workstation with a 1.7 GHz
Pentium IV Xeon processor. Three strategies are compared. Strategies 1
and 2 solve formulations S1 and S2, respectively. Strategy 3 solves formu-
lation S2 where the constraints are introduced through the
RELAXATION ONLY EQUATIONS construct. As in previous sections, for each
strategy, this table shows the number of total nodes in the search tree (Nt),
node where the optimal solution is found (No), maximum number of nodes
in memory (Nm). In addition, the table presents total CPU seconds (Tt),
CPU seconds spent on preprocessing (Tp), most of which is spent doing
local search, and the CPU seconds spent on local search after preprocess-
ing (T1).
As seen in Table 7, the introduction of the nonlinear constraints in Strat-

egies 2 and 3 reduces the number of nodes (Nt) by 60% and the memory
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requirements (Nm) by 94%. Simultaneously, there is over 57% reduction in
the total CPU time requirements (Tt). The benefits of Strategy 3 in com-
parison to Strategy 2 at a first glance may seem insignificant (less than 1%
increase in total number of iterations, accompanied by approximately 3%
decrease in total CPU time). A closer look reveals that Strategy 3 virtually
eliminates all time spent on local search in preprocessing (Tp) and during
the tree (Ti). The net CPU time gain by Strategy 3 versus Strategy 2 is only
3% solely due to problem ii8a2, which appears to be a pathological case
for which Strategy 3 takes a while to identify the global minimum. In gen-
eral, though, Strategy 3 seems to serve its purpose, which is to significantly
reduce the time spent on local search without compromising the efficiency
of the global search component (Nt and Nm).

8. Conclusions and Extensions

This paper has demonstrated that there are several types of typically non-
linear constraints which, while redundant from the modeling point of view
and detrimental to local search solvers, can significantly accelerate a
branch-and-bound global optimization algorithm by enhancing its lower
bounding capabilities. To allow for proper modeling of such constraints,
the RELAXATION ONLY EQUATIONS construct was introduced in the modeling
language of the BARON system.
The use of the RELAXATION ONLY EQUATIONS construct was demonstrated

in this paper in the context of RLT constraints, first-order optimality con-
ditions, and problem-specific optimality conditions. While CPU time gains
by using this construct as opposed to merely adding the nonlinear con-
straints to the nonlinear formulation were not significant as far as global
search is concerned, it is anticipated that the mere presence of such a mod-
eling language construct will motivate modelers to conceive additional
applications of this construct.
For RLT, the new modeling construct removes a considerable obstacle

towards systematic experimentation with it. The modeler now needs to pro-
vide only the nonlinear constraints from the initial step(s) of RLT; BARON
will then automatically construct the linearized RLT constraints while
avoiding detrimental effects of the nonlinear constraints on local search. A
natural extension in this context would be to automate the reformulation
step of RLT through a suitable modeling language construct, and combine
this with RLT-based relaxations of first-order optimality conditions, and
constraint-filtering mechanisms such as those proposed in [29].
Several additional extensions of this work are possible. For instance,

the addition of first-order necessary optimality conditions as part of the
model constraints was demonstrated to yield significant benefits. Thus,
the automatic generation of relaxations of optimality conditions for any
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user-provided model is worth future investigation. Another possibility is
to convexify the constraints passed as RELAXATION ONLY EQUATIONS and
only then use them as part of the local search model. We conjecture that,
while nonlinear constraints make local search difficult, linear ones that
are obtained from the reformulation–convexification techniques used in
BARON will considerably benefit local optimization.
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11. Hoos, H.H. and Stützle, T. (2000), SATLIB: An Online Resource for Research on SAT.

In: Gent, I.P., van Maaren, H. and Walsh, T. (eds.), Satisfiability Problem: Theory and
Applications, IOS Press, Amsterdam, pp. 283–292. SATLIB is available online at
http:==www:satlib:org=.

12. Horst, R. and Tuy, H. (1996), Global Optimization, Deterministic Approaches, third edi-

tion, Springer Verlag, Berlin.
13. Kearfott, R.B. (1996), Rigorous Global Search: Continuous Problems, In: Nonconvex

Optimization and Its Applications, Vol. 13. Kluwer Academic Publishers, Dordrecht.

14. McCormick, G.P. (1972), Converting general nonlinear programming problems to sepa-
rable nonlinear programming problems. Technical Report T-267, The George Washington
University, Washington, D.C.

278 N. V. SAHINIDIS AND M. TAWARMALANI



15. McCormick, G.P. (1976), Computability of global solutions to factorable non-convex

programs: Part I – Convex underestimating problems, Mathematical Programming 10,
147–175.

16. McCormick, G.P. (1983), Nonlinear Programming: Theory, Algorithms and Applications,

John Wiley & Sons.
17. Moore, R. (1993), Interval Analysis, Prentice Hall, Englewood Cliffs, NJ.
18. Quesada, I. and Grossmann, I.E. (1995), Global optimization of bilinear process networks

and multicomponent flows, Computers and Chemical Engineering 19(12), 1219–1242.
19. Ryoo, H.S. and Sahinidis, N.V. (1995), Global optimization of nonconvex NLPs and

MINLPs with applications in process design, Computers and Chemical Engineering 19,

551–566.
20. Ryoo, H.S. and Sahinidis, N.V. (1996), A branch-and-reduce approach to global opti-

mization, Journal of Global Optimization 8, 107–139.
21. Sahinidis, N.V. (1996), BARON: A general purpose global optimization software pack-

age, Journal of Global Optimization 8, 201–205.
22. Sahinidis, N.V. (2003), Global optimization and constraint satisfaction: The branch-and-

reduce approach, In: Bliek, A.C. Jermann, C. and Neumaier, A. (eds.), Global Optimi-

zation and Constraint Satisfaction, Lecture Notes in Computer Science Vol. 2861,
Springer, Berlin, pp. 1–16.

23. Schichl, H., Dallwig, S. and Neumaier, A. (2001), The NOP-2 modeling language for

nonlinear programming, Annals of Operations Research 104, 281–312.
24. Schweiger, C.A. and Floudas, C.A. (1998), MINOPT: A Modeling Language and

Algorithmic Framework for Linear, Mixed-Integer, Nonlinear, Dynamic, and Mixed-
Integer Nonlinear Optimization, Version 3.1, User’s Manual’. Available at

http:==titan:princeton:edu=MINOPT=minopt:html:
25. Shectman, J.P. and Sahinidis, N.V. (1998), A finite algorithm for global minimization of

separable concave programs, Journal of Global Optimization 12, 1–36.

26. Sherali, H.D. and Adams, W.P. (1999), A Reformulation–Linearization Technique for
Solving Discrete and Continuous Nonconvex Problems, In: Nonconvex Optimization and its
Applications, Vol. 3.1 Kluwer Academic Publishers, Dordrecht.

27. Sherali, H.D., Adams, W.P. and Driscoll, P.J. (1999), Exploiting special structures in
constructing a hierarchy of relaxations for 0–1 mixed integer programs, Operations Re-
search 46, 396–405.

28. Sherali, H.D. and Smith, J.C. (2001), Improving discrete model representations via
symmetry considerations, Management Science 47, 1396–1407.

29. Sherali, H.D. and Tuncbilek, C.H. (1995), A reformulation–convexification approach for
solving nonconvex quadratic programming problems, Journal of Global Optimization 7, 1–

31.
30. Sherali, H.D. and Wang, H. (2001), Global optimization of nonconvex factorable pro-

gramming problems, Mathematical Programming 89, 459–478.

31. Smith, E.M.B. and Pantelides, C.C. (1996), Global optimisation of general process
models. In: Grossmann I.E. (ed.), Global Optimization in Engineering Design, Kluwer
Academic Publishers, Boston, MA, pp. 355–386.

32. Tawarmalani, M. and Sahinidis, N.V. (2001), Semidefinite relaxations of fractional pro-
grams via novel techniques for constructing convex envelopes of nonlinear functions,
Journal of Global Optimization 20, 137–158.

33. Tawarmalani, M. and Sahinidis, N.V. (2002a), Convex extensions and convex envelopes
of l.s.c. functions, Mathematical Programming 93, 247–263.

34. Tawarmalani, M. and Sahinidis, N.V. (2002b), Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and

ACCELERATING BRANCH-AND-BOUND 279



Applications, Vol. 65 of Nonconvex Optimization and Its Applications, Kluwer Academic

Publishers, Dordrecht.
35. Tawarmalani, M. and Sahinidis, N.V. (2004), Global optimization of mixed-integer

nonlinear programs: A theoretical and computational study, Mathematical Programming.

99, 563–591.
36. Van Hentenryck, P., Michel, L. and Deville, Y. (1997), Numerica: A Modeling Language

for Global Optimization, The MIT Press, Cambridge, MA.

280 N. V. SAHINIDIS AND M. TAWARMALANI


